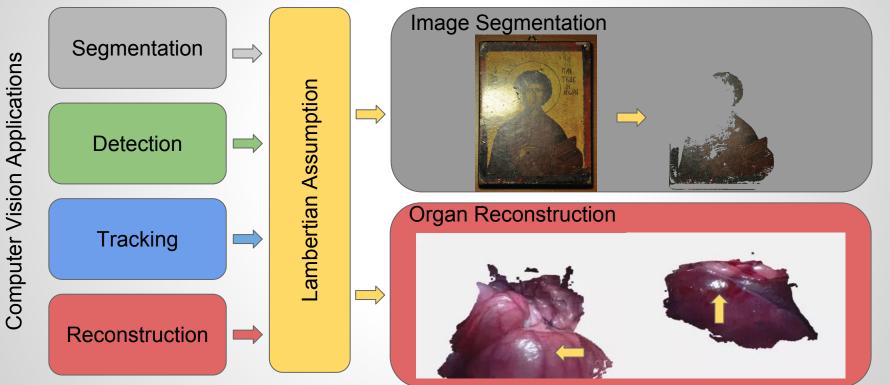
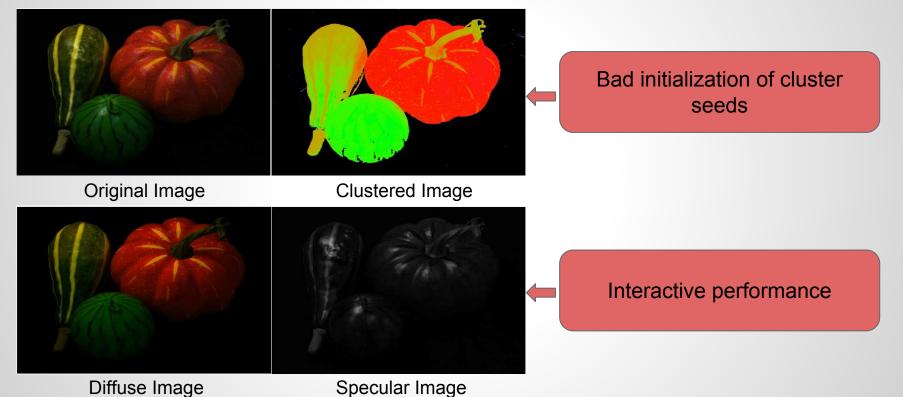
Real-Time High-Quality Specular Highlight Removal using Efficient Pixel Clustering


Antonio C. S. Souza (IFBA - Brazil) **Márcio C. F. Macedo (UFBA - Brazil)** Verônica P. Nascimento (IFBA - Brazil) Bruno S. Oliveira (Computação Brasil)

Agenda

- Introduction;
- Real-Time Specular Highlight Removal;
- Results and Discussion;
- Conclusion and Future Work;


Introduction

Context

J. Song et al. MIS-SLAM: Real-time Large Scale Dense Deformable SLAM System in Minimal Invasive Surgery based on Heterogeneous Computing. Proceedings of the IEEE IROS, 2018.

Current Scenario

J. Suo et al. Fast and High Quality Highlight Removal from a Single Image. IEEE Transactions on Image Processing, vol. 25, no. 11, pp. 5441-5454, 2016.

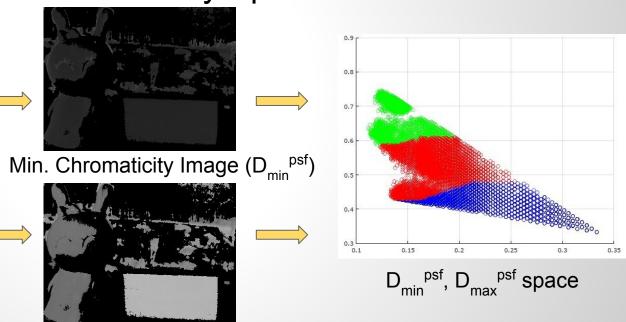
Contributions

- Our main contributions are:
 - An efficient pixel clustering scheme that provides improved initialization of cluster seeds and higher accuracy than related work;
 - A pipeline that supports efficient real-time implementations for both CPU and GPU architectures;

Real-Time Specular Highlight Removal

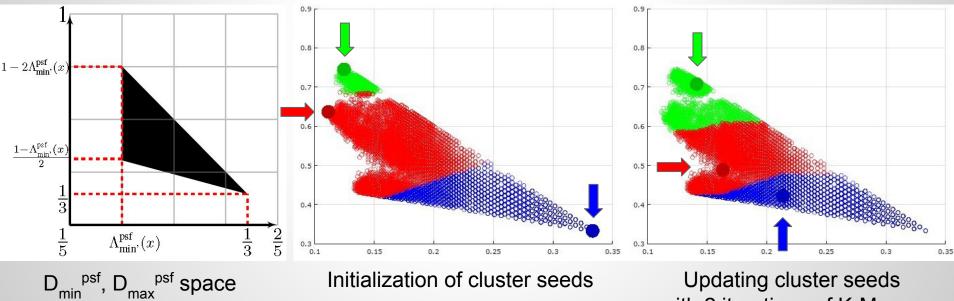
• Step 1 - Pseudo Specular-Free Image Computation:

Input Image


Minimum Image

Pseudo Specular-Free Image

• Step 2 - Min-Max Chromaticity Space Estimation:



Pseudo Specular-Free Image

Max. Chromaticity Image (D_{max}^{psf})

Step 3 - Pixel Clustering:

with 2 iterations of K-Means

- Step 4 Specular Highlight Removal:
 - Compute an intensity ratio I^{ratio} per pixel:
 I^{ratio} = I^{max} / (I^{max} I^{min})
 - Select a single intensity ratio r per cluster that divides diffuse and specular pixels;
 - Compute the specular term **S**:

$$\blacksquare S = I^{\max} - r * (I^{\max} - I^{\min})$$

Results and Discussion

Experimental Setup

- For all tests, we used an Intel[®] Core[™] i7-3770K, CPU @3.50GHZ, 8GB RAM, NVIDIA GeForce GTX Titan X;
- Our approach was implemented using OpenCV 2.3.1 and CUDA 8.0;
- Our final source code is open and available for free¹;
- We evaluate our approach using a standard dataset²;

²H. Shen and Z. Zheng. Real-Time Highlight Removal using Intensity Ratio. Applied Optics, vol. 52, no. 19, pp. 4483-4493, 2013. ¹https://github.com/MarcioCerqueira/RealTimeSpecularHighlightRemoval

Accuracy

• Qualitative Evaluation (Animals):

Original

Ground-Truth

Our Result

Accuracy

• Qualitative Evaluation (Cups):

Original

Ground-Truth

Our Result

Accuracy

• Quantitative Evaluation (PNSR metric):

Method	Masks	Cups	Fruits	Animals
Shen <i>et al.</i> 2008	32.2	37.5	38.0	34.2
Shen and Cai 2009	34.0	37.6	36.9	34.8
Q. Yang <i>et al.</i> 2015	32.2	38.0	35.6	37.2
Shen and Zheng 2013	34.1	39.3	38.9	37.3
Suo <i>et al.</i> 2016	34.2	NRA	40.4	NRA
Ren <i>et al.</i> 2017	34.5	38.0	37.7	NRA
Our approach	34.9	39.5	39.4	37.5

Processing Time

• Varying Image Resolution (seconds):

Method	480p	720p	1080p	2160p
Shen <i>et al.</i> 2008	7.96	26.04	70.68	267.55
Q. Yang <i>et al.</i> 2015	0.11	0.29	0.63	2.48
Shen and Cai 2009	0.055	0.15	0.34	1.44
Shen and Zheng 2013	0.023	0.066	0.14	0.54
Our CPU approach	0.011	0.030	0.068	0.26
Our GPU approach	0.013	0.015	0.017	0.024

Conclusion and Future Work

Final Considerations

- Conclusion:
 - Our approach is two times (CPU) to one order of magnitude (GPU) faster than related work for high-resolution images;
 - Our approach is more accurate than related work for most of the tested images;
 - Hence, our approach is suitable for applications that require real-time specular highlight removal;

Final Considerations

- Future Work:
 - Larger specular highlight removal dataset;
 - Better handling of specular highlights;

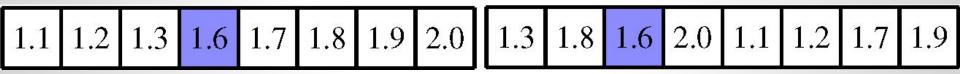
Original

Ours

Shen/Zheng 2013

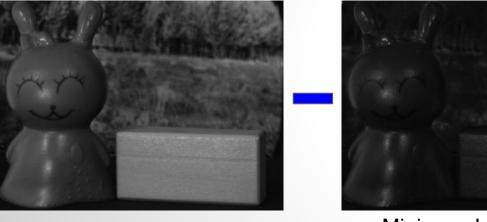
Shen and Cai 2009

Acknowledgments


- We are grateful to:
 - The authors of related work, for sharing their source codes for processing time evaluation;
 - NVIDIA Corporation for providing the NVIDIA GeForce GTX Titan X through the GPU Education Center program;
 - CAPES for financial support;

Thank You!

Antonio C. S. Souza (antoniocarlos@ifba.edu.br) Márcio C. F. Macedo (marcio.cerqueira@ufba.br) Verônica P. Nascimento (veronicapaixao@ifba.edu.br) Bruno S. Oliveira (boliveira@fapex.org.br)


• Step 5 - (Per Cluster) Pixel Labelling:

1.3 1.8 1.0	2.0 1.1	1.2 1.7	1.9
-------------	---------	---------	-----

								-							
1.1	1.2	1.3	1.6	1.7	1.8	1.9	2.0	1.3	1.8	1.6	2.0	1.1	1.2	1.7	1.9

• Step 4 - Intensity Ratio Estimation:

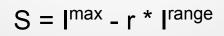
Maximum Image (I^{max})

Minimum Image (I^{min})

Range Image (I^{range})

I^{ratio} = I^{max} / I^{range} $I_D^{\text{ratio}} < I_D^{\text{ratio}}$

• Step 6 - Specular Highlight Removal:


Input Image

Specular Image

Diffuse Image

